Subseafloor microbial communities in hydrogen‐rich vent fluids from hydrothermal systems along the Mid‐Cayman Rise

نویسندگان

  • Julie Reveillaud
  • Emily Reddington
  • Jill McDermott
  • Christopher Algar
  • Julie L. Meyer
  • Sean Sylva
  • Jeffrey Seewald
  • Christopher R. German
  • Julie A. Huber
چکیده

Warm fluids emanating from hydrothermal vents can be used as windows into the rocky subseafloor habitat and its resident microbial community. Two new vent systems on the Mid-Cayman Rise each exhibits novel geologic settings and distinctively hydrogen-rich vent fluid compositions. We have determined and compared the chemistry, potential energy yielding reactions, abundance, community composition, diversity, and function of microbes in venting fluids from both sites: Piccard, the world's deepest vent site, hosted in mafic rocks; and Von Damm, an adjacent, ultramafic-influenced system. Von Damm hosted a wider diversity of lineages and metabolisms in comparison to Piccard, consistent with thermodynamic models that predict more numerous energy sources at ultramafic systems. There was little overlap in the phylotypes found at each site, although similar and dominant hydrogen-utilizing genera were present at both. Despite the differences in community structure, depth, geology, and fluid chemistry, energetic modelling and metagenomic analysis indicate near functional equivalence between Von Damm and Piccard, likely driven by the high hydrogen concentrations and elevated temperatures at both sites. Results are compared with hydrothermal sites worldwide to provide a global perspective on the distinctiveness of these newly discovered sites and the interplay among rocks, fluid composition and life in the subseafloor.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variability in microbial community and venting chemistry in a sediment-hosted backarc hydrothermal system: Impacts of subseafloor phase-separation.

Phase-separation and -segregation (boiling/distillation of subseafloor hydrothermal fluids) represent the primary mechanisms causing intra-field variations in vent fluid compositions. To determine whether this geochemical process affects the formation of microbial communities, we examined the microbial communities at three different vent sites located within a few tens meters of one another. In...

متن کامل

A novel microbial habitat in the mid-ocean ridge subseafloor.

The subseafloor at the mid-ocean ridge is predicted to be an excellent microbial habitat, because there is abundant space, fluid flow, and geochemical energy in the porous, hydrothermally influenced oceanic crust. These characteristics also make it a good analog for potential subsurface extraterrestrial habitats. Subseafloor environments created by the mixing of hot hydrothermal fluids and seaw...

متن کامل

Theoretical constraints of physical and chemical properties of hydrothermal fluids on variations in chemolithotrophic microbial communities in seafloor hydrothermal systems

In the past few decades, chemosynthetic ecosystems at deep-sea hydrothermal vents have received attention as plausible analogues to the early ecosystems of Earth, as well as to extraterrestrial ecosystems. These ecosystems are sustained by chemical energy obtained from inorganic redox substances (e.g., H2S, CO2, H2, CH4, and O2) in hydrothermal fluids and ambient seawater. The chemical and isot...

متن کامل

Editorial: Hydrothermal microbial ecosystems

The papers in the " Hydrothermal Vent " research topic cover a range of microbiological research in deep and shallow hydrothermal environments, from high temperature " black smokers, " to diffuse flow habitats and episodically discharging subsurface fluids, to the hydrothermal plumes. Together they provide a snapshot of current research interests in a field that has evolved rapidly since the di...

متن کامل

Phylogenetic diversity of nitrogenase (nifH) genes in deep-sea and hydrothermal vent environments of the Juan de Fuca Ridge.

The subseafloor microbial habitat associated with typical unsedimented mid-ocean-ridge hydrothermal vent ecosystems may be limited by the availability of fixed nitrogen, inferred by the low ammonium and nitrate concentrations measured in diffuse hydrothermal fluid. Dissolved N2 gas, the largest reservoir of nitrogen in the ocean, is abundant in deep-sea and hydrothermal vent fluid. In order to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2016